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Keywords

Chromatography
A range of methods designed to separate the molecular components of a complex
mixture on the basis of their physical properties.

Mass Spectrometry
An analytical chemistry technique that can be used to identify molecules by
fragmenting them into ions, which are then separated on the basis of mass.

Nuclear Magnetic Resonance
The context-dependent resonance of various atomic nuclei (such as the hydrogen
nucleus) when placed in a magnetic field, which can be used to obtain structural
information about the molecular components of a solution.

Regression Modeling
Mathematical methods designed to predict one (or more) variables from the values of
many other measured variables.

� Metabonomics is the study of systemic biochemical profiles and regulation of
function in whole organisms by analyzing biofluids and tissues. Like genomics (the
study of the complete repertoire of genes in an organism) and proteomics (the
study of the protein complement of a tissue or cell), metabonomics can provide
a holistic overview of the current physiological status of an organism, and its
response to external stressors. Here we review the technological approaches to
generating metabolic profiles, highlighting the advantages and disadvantages of
each methodology, as well as the various strategies for extracting useful conclusions
from the very large datasets that can be generated by such profiling. Metabonomics
can be applied to a wide range of biological applications, including predictive
toxicology, probing the physiology of disease both in animal models and in man,
and to make clinically useful diagnoses of disease. With examples of each of
these applications, we illustrate the potential of metabonomics to contribute to
our understanding of complex biological systems in a post-genomic era where we
understand many of the components of living systems, but few of their dynamic
interactions.
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1
What is Metabonomics?

The suffix ‘‘omics’’ is now routinely ap-
plied in many fields to the holistic study
of an entire system, as opposed to a
reductionist description of each of its
parts independently. Thus, metabonomics
is the name given to the holistic study
of metabolic systems in living organ-
isms. In principle, a metabolic profile
is therefore a simple list of all the low
molecular weight metabolites (such as
sugars, amino acids, and lipids) present
in a biological system, together with the
concentration of each metabolite present
(the generation of such profiles is one of
the definitions in use for metabolomics).
Clearly, such a profile is analogous to a
genomic profile (a list of all the genes
composing an organism, perhaps with
their levels of expression also) or a pro-
teomic profile (a list of the proteins in
an organism).

Like genomics and proteomics, how-
ever, metabonomics is also much more
than a simple list. The metabolic profile
of a particular biological sample is just a
snapshot of a complex, dynamic network
that reflects the physiological activity of
the organism. Enzymes are rapidly inter-
converting metabolites; new compounds
are being absorbed from the environment;
waste products are being excreted. The sci-
ence of metabonomics, therefore, is not
only about capturing metabolic profiles
(described in Sect. 2 below) but also about
extracting an understanding of the under-
lying biological system from the resulting
dataset (described in Sect. 3). In particu-
lar, metabonomics is a global metabolic
regulation approach based on understand-
ing complex system behavior, designed to
reveal the response of an organism to an
external stressor or stimulus.

The relationship between metabonomics
and other systems biology disciplines is
illustrated in Fig. 1. Genetic information
(coupled with the pre-existing levels of
various other proteins) is the major deter-
minant of the mRNA (or transcriptomic)
profile, which in turn is a key determi-
nant of the proteomic profile. Proteins
(in the form of enzymes) are an impor-
tant determinant of the metabolic profile,
which, in turn, feeds back to modulate
gene expression patterns. This ‘‘homeo-
static loop’’ is then modulated by external
inputs from the environment. The major
input of low molecular weight compounds
from the diet can have a significant effect
on the metabonomic profile, which sub-
sequently affects the gene expression and
protein profiles of the organism. Other
environmental factors can also affect the
metabolic profile (for example, the amount
of light determines the rate of vitamin D
formation), as well as directly altering gene
expression (the amount of exercise modu-
lates skeletal muscle gene expression and
ultimately protein content). This position
at the interface between genetic and envi-
ronmental determinants makes metabolic
profiling a uniquely powerful tool for prob-
ing the dynamic physiological status of
an organism.

Compared with genomic and proteomic
profiles, the metabonomic profile is also
more dynamic, reflecting the current
physiological status of the organism as well
as its future behavior. Polymorphisms,
in particular genes (a component of the
genomic profile), may allow the risk of
developing a disease to be estimated,
but they cannot determine whether the
organism is suffering from that disease at
a given point in time.

To properly understand the metabolic
network of a multicellular organism would
require continuous measurement of the
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Fig. 1 Relationship between the ‘‘omics.’’ Much of the variation in protein levels
(measured in proteomics) is due to variations in the expression of the mRNA
encoding that protein (measured in transcriptomics, a subset of genomics). In turn,
the variation in the levels of metabolites (measured in metabonomics) is determined
by the levels of various enzymes (proteins). Metabolites can then feedback and
regulate gene expression patterns, closing a ‘‘homeostatic loop.’’ The environment
interacts with this homeostatic loop primarily through the influence of diet on the
metabolic profile, although other environmental factors can also have a direct effect
on both metabolism and gene expression (for example, exposure to UV light directly
affects vitamin D3 levels, and exercise can affect gene expression patterns).

levels of all the metabolites present in all
of the cells and tissues that compose the
organism. Such an ‘‘ideal’’ metabolic pro-
file is unlikely to be practicable attainable
(at least in the near future). As a result,
practical metabonomics involves selection
of both a sample of the whole organism
(for example, a blood specimen) and a
time point (or series of time points) at
which to make the observations. Clearly,
the extent to which one can hope to under-
stand the metabolism of the organism as a
whole from a (potentially poorly represen-
tative) sample is unclear and care should
be taken in drawing broad conclusions

from limited measurements. Similarly,
available analytical chemistry techniques
(such as spectroscopy or chromatography)
do not allow accurate measurements of
the levels of every low molecular weight
compound present in a given biological
specimen. These practical limitations are
illustrated in Fig. 2.

Even with the current practical limita-
tions, metabonomics is a powerful new
tool for studying complex biological sys-
tems. It has already been used successfully
to monitor the physiological response to
xenobiotics (such as new pharmaceuti-
cals under development), and its use in
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Fig. 2 A generic ‘‘omics’’ experiment. The aim
of ‘‘omics’’ biology is to make measurements on
individuals and then deduce predictive rules
about the organism. In order to go from
individual observations to a prediction, various
steps must be followed: a sample must be taken
on which many measurements are made to
generate a complex data vector. Various

mathematical modeling tools are then used to
build a regression model which can be used to
make a prediction that can be validated.
Examples of each step in a typical
metabonomics experiment are shown in the left
panel. Various assumptions made at each step
are listed in the right panel.

toxicology is increasing. Metabonomics
can also be used to diagnose the pres-
ence of diseases, both for those where
in-born errors of metabolism are re-
sponsible for the symptoms, and also
in diseases where metabolic disregula-
tion is less obviously involved in the
pathogenesis of the disease. Using a
metabolic profile to diagnose disease is
not just useful in the clinic: it can
also provide important new information
about the physiological processes that
are misregulated in the disease, which
might ultimately assist in the search for
new treatments.

The ‘‘homeostatic loop’’ illustrated in
Fig. 1 also emphasizes the importance
of integrating the genetic, protein, and
metabolic profiles if we are to maximize
our understanding of the organism. The
boundaries between the ‘‘omics’’ repre-
sent technical limits in our methodolo-
gies for making measurements rather
than being any useful dividing line be-
tween the applications of the informa-
tion that has been generated. Fortu-
nately, the profiles generated can be
merged (at least in principle, although
the bioinformatics challenges in doing
so are significant) yielding a composite
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(or ‘‘multi-omics’’) profile of the organ-
ism. Any question partially addressed by
the separate genomic, proteomic, and
metabonomic profiles will likely be more
fully answered through the careful con-
struction and analysis of such ‘‘multi-
omics’’ profiles.

2
Methods for Generating a Metabonomic
Profile

2.1
Criteria for Judging Metabonomic Profiling
Methods

A range of different analytical chemistry
approaches have been used to gener-
ate metabonomic profiles. Unfortunately,
none of the profiles generated even ap-
proximate to the ‘‘ideal’’ profile, and
it is necessary to make an informed
choice of analytical tool depending on
various trade offs. There are three im-
portant criteria that contribute to the
‘‘ideal’’ profile:

1. Completeness. If we assume that the
‘‘ideal’’ profile consists of a list of
all the different low molecular weight
compounds present in a biological
sample, then any profiling method
can be judged on the fraction of
all the metabolites present that con-
tribute to the profile. In absolute
terms, this can be difficult to as-
sess, since without a ‘‘gold standard’’
complete profile it is impossible to
know what components have been
missed. In practice, however, apply-
ing multiple analytical approaches to
the same sample soon throws up ex-
amples of components missed by the
other techniques.

Two factors contribute to the complete-
ness of a profile. Firstly, the general
sensitivity limit of the technique sets the
threshold below which no components
are detected. While an ‘‘ideal’’ pro-
file would include even components
present as just a single molecule, practi-
cality suggests that components present
at such low levels are unlikely to have
a biologically significant effect, and
that a profile with sensitivity thresh-
old in the pM or nM range would
be adequate for all but the most de-
manding applications. Unfortunately,
several techniques are more insensitive
still, and will miss components that are
biologically relevant. It is worth not-
ing, however, that sensitivity can be
a double-edged sword – many of the
low abundance metabolic components
are derived from symbiotic or xenobi-
otic organisms (such as gut microflora)
not directly related to mammalian
metabolism. It is unclear whether gath-
ering such enlarged metabolic datasets
using highly sensitive analytical ap-
proaches is useful – indeed, it may
simply make the task of extracting
a meaningful picture from the re-
sulting dataset more difficult (see
Sect. 3).
The second factor is the invisibility of
particular compounds, or more likely
classes of compounds, to a particu-
lar analytical technique. An obvious
example would be the inability of non-
volatile components to contribute to a
gas chromatograph. Less obvious might
be the inability of a technique to sep-
arate or distinguish components with
closely related structures, such that
a single ‘‘entry’’ in the profile is in
fact a composite measure of two or
more compounds.
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2. Bias. The ‘‘ideal’’ profile is not merely
a list of the components present in
the sample but also an indicator of
the relative amounts of each com-
ponent. Thus, if certain components
are more readily detected than oth-
ers (on a molar basis) the analytical
technique will display a bias, suggest-
ing some components are present at
relatively higher levels than they actu-
ally are.

3. Cost. The resource implications of any
data-gathering exercise must be prop-
erly considered as part of the sci-
entific experimental design. This is
particularly true of any nonselective,
high data density ‘‘omics’’ experiment,
where the amount of understanding
about the system which is ultimately
gained will likely depend on how
many different (that is, uncorrelated)
components of the system are ana-
lyzed, rather than whether any par-
ticular class of components (be it
metabolites, proteins or genes) has
been exhaustively investigated. Conse-
quently, the resource implications of
selecting any given analytical method-
ology rightly forms a part of the
experimental design: does the addi-
tional information gained by adding
a particular technique to the portfo-
lio of analyses to be performed on a
given sample add sufficient uncorre-
lated variables to justify the resources
employed, or could the same resources
generate more uncorrelated informa-
tion through application of a differ-
ent technique?

No technique currently available is com-
plete, unbiased, and inexpensive, but each
has certain advantages for particular ap-
plications. Application of multiple tech-
niques to the same sample may improve

completeness and reduce bias, but only at
increased resource implication.

2.2
Nuclear Magnetic Resonance (NMR)
Spectroscopy

NMR (nuclear magnetic resonance) spec-
troscopy has been widely used to gener-
ate metabonomic profiles, particularly of
serum and urine samples. The primary
advantages of NMR spectroscopy are the
intrinsic reproducibility of the generated
spectrum and the complete lack of bias.
Across the information-dense region of
the spectrum the coefficient of variation
between replicate measures made on dif-
ferent days is below 1%. Reproducibility of
this nature allows even small differences
between profiles to be interpreted as signif-
icant, increasing the power of the exper-
iment, particularly when relatively small
numbers of profiles are being compared.

The NMR spectrum depends on the
context-dependent resonance of hydrogen
nuclei within the various molecules that
compose the biological sample. As a result,
any molecular structure containing at least
one hydrogen nucleus is in principle
represented within the spectrum. Since all
biological molecules fall into this category,
essentially every metabolite can contribute
to an NMR-derived metabonomic profile.
Furthermore, the intensity of the signal
due to each hydrogen nucleus is of the
same strength irrespective of its molecular
context. Consequently, there is absolutely
no bias in the estimated relative amounts
of each of the metabolites detected.

Despite this lack of bias, NMR spec-
troscopy cannot be considered to generate
a complete metabonomic profile because
of the inherent insensitivity of the ap-
proach. Although the high reproducibility
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allows even very small peaks to be distin-
guished from baseline noise, these peaks
still represent relatively abundant molecu-
lar components of the sample. Although
the absolute sensitivity cutoff varies de-
pending on the particular implementation
of the technique (for example, the use
of cryoprobes significantly improves the
sensitivity with nanogram quantities of
compounds detected), nevertheless, very
low abundance molecules are difficult to
detect. Since many biological molecules
of importance (such as vitamins and sig-
naling molecules like prostaglandins or
cyclicAMP) rarely achieve concentrations
above the nM range, they are effec-
tively absent from NMR-derived metabo-
nomic datasets.

Although NMR spectroscopy is the tool
of choice for most chemical structure de-
termination problems, it also struggles
to distinguish certain classes of closely
related molecular structures. For exam-
ple, it is difficult to study complex mix-
tures of fatty acids of different chain
lengths by NMR spectroscopy, because
the signals from the different molecular
structures are overlaid in the resulting
spectrum. Although ever more complex
NMR-based approaches have been devised
to aid separation and unique identifica-
tion of given molecular structures (such
as 2D-TOCSY or various heteronuclear
NMR approaches), these approaches are
resource intensive and may still be less
informative than mass spectrometry for
certain molecular classes.

2.3
Chromatography and Mass Spectroscopy
(LC-MS and GC-MS)

Chromatography followed by mass spec-
trometry is the other major analytical
tool that has been used to generate

metabonomic profiles. Both liquid chro-
matography (LC) and gas chromatography
(GC) have been used. GC may offer su-
perior resolving power, at least for certain
classes of molecules, but it is limited by
the lack of volatility of many metabolites.
Although this can be overcome to some ex-
tent by covalent modification of the sample
prior to chromatography, a range of impor-
tant metabolites still fail to enter the gas
phase and hence do not contribute to the
resulting metabonomic profile. As a result,
the effective size limit for GC-MS is about
700 Da, whereas much larger molecules
can contribute to the NMR-, and to some
extent, to the LC-MS-derived profiles.

The major advantage of GC-MS and LC-
MS is the sensitivity of the technique,
which can detect component compounds
down to the likely limit of biological rele-
vance (and, indeed, may be too sensitive
in some cases, populating the metabolic
dataset with large numbers of minor con-
taminants of the sample, which are not
the products of mammalian metabolism).
As a result, components such as vitamins
and signaling intermediates, which were
invisible to the NMR spectrometer, now
contribute to the GC-MS-derived metabo-
nomic profile.

The combination of chromatography
and mass spectroscopy (MS) can also
allow unambiguous assignment of struc-
ture to the components of the biological
sample in a way that is difficult, though
not impossible, with NMR spectroscopy.
Comparison of fragmentation patterns
with databases, allows deconvolution of
peaks with overlapping retention times,
and as many as 1000 different molec-
ular components to be unambiguously
identified from a single complex biolog-
ical fluid. This is particularly true when
comparing different members of the same
homologous series (such as fatty acids of
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different chain lengths). However, LC-MS
and GC-MS usually poorly resolve struc-
tural isomers that are readily distinguished
by NMR spectroscopy. It is also important
to note that, unlike NMR spectroscopy,
mass spectrometry cannot be used to ob-
tain the structure of unknown components
contributing the profile – if the fragmen-
tation pattern is not among the database
of ‘‘known’’ metabolites, no assignment
is possible.

Furthermore, MS-based detection is
inherently biased: some molecules do
not ionize, or only ionize poorly, under
any given set of conditions and as a
result are either completely invisible or
detected only weakly. Consequently, an
MS-derived metabonomic profile may be
highly biased, and little information can
be gained from the relative signals due
to different components in the biological
sample. However, it is still possible to
compare the levels of the same component
across different samples in a reliable and
reproducible way. Again, variations in the
implementation of the technique (such as
using both positive and negative ionization
modes and varying the cone voltage)
can alleviate, though not eliminate, this
problem at the cost of increased resource
implication.

2.4
Nanosensors

More recently, it has become clear that
various designs of the nanosensor can
also be applied to generating metabonomic
profiles. Nanosensors coated with various
hydrophobic coatings adsorb a wide range
of metabolites differentially, allowing a
profile to be generated that is related
in a complex fashion to the molecular
composition of the fluid under study.
Although to date, no metabonomic profile

that has been generated using nanosensor
technology has been reported in the
scientific literature, it seems likely that
such datasets will appear imminently.

Nanosensor-derived metabonomic pro-
files will presumably have the advantage
of low cost (being rapid and high through-
put, and not requiring capital intensive
reading equipment). However, the com-
plex nature of the relationship between
the resulting data vector and the molecu-
lar composition of the sample will likely
preclude any straightforward listing of
the component molecules or estimation
of the relative amounts. Such a pro-
file will be neither substantially complete
nor unbiased.

Yet, at least for clinical diagnostic ap-
plications, such profiles are not without
utility. Although it may be difficult (or in-
deed impossible) to understand precisely
which molecular components contribute
to the systematic difference in profiles
between two groups of interest (such as
diseased individuals versus healthy indi-
viduals), nevertheless, the very presence of
a systematic difference may be diagnosti-
cally useful.

2.5
Other Approaches

Many other analytical chemistry tech-
niques can be applied to complex biological
fluids to generate a metabonomic profile,
although (like nanosensors) such profiles
cannot usually be translated into a list
of molecular components with associated
relative concentrations. For example, in-
frared spectroscopy provides a low-cost
approach to generating a metabonomic
profile, which may be useful in some
circumstances. It may be possible, de-
pending on the nature of the biological
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sample and the particular molecular com-
ponents of interest, to generate a limited
list of molecular components from an in-
frared spectrum.

Ultimately, however, the utility of a
metabonomic profile obtained with any
given technique depends on the applica-
tion. Many studies (particularly aimed at
diagnostic applications) may not require
the immense structural detail that can
be generated using the resource-intensive
NMR and MS techniques. Equally, at-
tempts to identify biomarkers associated
with a particular phenotype will re-
quire a metabonomic profile that more
nearly corresponds to the theoretical
‘‘ideal’’ profile. There remains, therefore,
a considerable amount of trial and er-
ror in the selection of the analytical
toolkit best suited to answering a partic-
ular question.

3
Methods for Interpreting Metabolic Profiles

3.1
The Problems of Interrogating Very Large
Datasets

Much of the power of the metabonomic
approach stems from the generation of
very large datasets, which are essentially
unselected in terms of the contributing
components (that is, there was no pre-
existing hypothesis governing the selection
of variables to be measured). As a conse-
quence, special techniques are required to
handle the resulting datasets, since extract-
ing meaningful conclusions from datasets
with millions of datapoints is a daunt-
ing exercise.

The basic aim in interpreting a metabo-
nomic dataset is no different from any
conventional multivariate analysis. The

value of a dependent (or Y -) variable
is estimated from a collection of mea-
sured X -variables (Fig. 3). For example,
one might wish to estimate blood pressure
from a range of physiological (or metabo-
nomic) measures. While the Y -variable
to be estimated (or ‘‘modeled’’) may
be continuous (like blood pressure), it
may equally be a discrete classification
variable (which divides each observa-
tion into two or more groups, such as
the presence and absence of a particu-
lar disease).

The problems associated with analyzing
very large datasets are basically twofold.
Firstly, a metabonomic profile might
typically be composed of thousands of
datapoints for each individual, yet such a
profile may only have been generated from
a relatively small number of individuals
(tens or at most hundreds per group).
Such datasets are typically described as
‘‘short and fat,’’ having many more
variables than observations (illustrated in
Fig. 3). Analyzing such short and fat
datasets using conventional multivariate
statistics is dangerous, because it becomes
increasingly likely that you can construct
a model that correctly describes the
phenotypic classification of the individuals
by chance alone as the number of variables
exceeds the number of observations.

Secondly, many of the variables that
compose the metabolic profile may be
highly correlated with each other. This is
a particular problem with spectroscopic
data, where neighboring variables are in-
tegrals of a continuous spectrum, forcing
a relationship between nearby spectral re-
gions. Conventional statistical approaches
to multivariate analysis assume that all
the predictor variables are independent,
and the widespread colinearity of metabo-
nomic profile variables renders the con-
ventional multivariate models error prone.
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Fig. 3 The principle of regression modeling. The principle of regression
modeling is to predict a range of features about a complex system (such as a
biological organism) from a collection of unrelated measurements. In
metabonomics, this consists of predicting phenotype or behavior (a Y-matrix
of M features of N individuals) from a metabonomic dataset consisting of
K measured metabolic variables from the same N individuals. Unlike
conventional regression modeling, metabonomics datasets are typically
‘‘short and fat’’ with many more measurements per observation than
individuals (K � N). The Y-matrix to be predicted might be a single
continuous variable (M = 1), or even a categorical description (diseased or
healthy, for example), whereupon the modeling is usually termed a
discriminant analysis. Figure reproduced with permission from
www.graingerlab.org.

3.2
Conventional Statistical Approaches (LDA)

As noted above, a conventional multivari-
ate model (in which a dependent variable
(Y) is predicted from a matrix of indepen-
dent variables) is based on the assumption
that the number of X -variables is less than
the number of observations (n), and that all
the X -variables are uncorrelated. In most
experiments, a series of raw metabonomic
profiles violates both assumptions and as
a general rule conventional multivariate
statistics should not be applied to metabo-
nomic datasets.

However, various preprocessing steps
can convert the raw metabonomic dataset
into a form amenable to conventional
statistical analysis. For example, there ex-
ists a range of prefilter algorithms (see
Sect. 3.6 below) that allow the number

of X -variables to be substantially re-
duced, for example, by retaining only
those X -variables that are most signif-
icantly correlated with the dependent
variable Y . Such variable-selection algo-
rithms may also incorporate rules to
eliminate intercorrelated X -variables. Af-
ter variable selection, the resulting dataset
can be analyzed by conventional multivari-
ate statistics, such as linear discriminant
analysis (LDA).

Although such variable-selection ap-
proaches circumvent the limitations of
conventional multivariate statistics, they
can limit the power of the analysis to iden-
tify associations between the X-matrix and
the dependent Y -variable, since much of
the information in the X-matrix has been
discarded. In general, therefore, the other
approaches below (which have been devel-
oped specifically for the analysis of very
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large, or megavariate, datasets) tend to be
more powerful.

3.3
Projection Methods (PCA and PLS)

Instead of selecting a subset of vari-
ables from the X-matrix, it is possible
instead to combine the X -variables in lin-
ear combinations to generate a smaller
number of composite variables. This ap-
proach (termed projection) deals effectively
with both of the limitations to megavariate
analysis: variable number is reduced, and
intercorrelation is minimized.

The principle of projection is illustrated
in Fig. 4. Here, a complex 3-dimensional
object is represented by a simpler
2-dimensional shadow. In the left panel,
the axis of projection is chosen such that
the 2-D shadow poorly retains the infor-
mation of the original object, whereas
in the right panel the optimum projec-
tion is chosen, which retains most of
the information encoded in the original
3-D object. The mathematical algorithms
that underlie projection methods such as
principal component analysis (PCA) or
projection to latent structures using par-
tial least squares (PLS) work by selecting
the best projections. A major difference
between PCA and PLS is that PLS is
a supervised method, which means that

the dependent Y -variable is used in the
process of locating the best projection
of the data. Application of these algo-
rithms to high-dimensional datasets (such
as metabonomic profiles) can yield just
a handful of composite variables (princi-
pal components), which are simple lin-
ear combinations of the original matrix
of X -variables. Unlike simpler variable-
selection techniques, projection retains as
much as possible of the information in the
original X-matrix, while reducing the di-
mensionality of the dataset to manageable
proportions.

One potential problem with projection
methods is overfitting the model. With a
sufficiently large number of X -variables, it
will always be possible to generate combi-
nations of the X -variables that predict the
dependent variable very well. As a result,
it is essential to include a robust external
model validation step in the analysis pro-
tocol. One example of a useful validation
step is scrambling the dependent variable
and demonstrating that the X-matrix pre-
dicts the real dependent variable better
than the scrambled variable. An alternative
approach is to use the generated model to
make predictions about an external dataset
not used during model generation. Ex-
haustive validation is essential for models
built using supervised techniques, such as
PLS, where the dependent variable was

(a) (b)

Fig. 4 The principle of projection. A complex
high-dimensional object can be represented by a
simpler, lower-dimensional model by projection.
This is illustrated by the 2-D shadow of 3-D object
such as key. However, depending on the particular
projection selected, the 2-D model may be poorly
representative of the original 3-D object (panel A).
The aim of projection modeling tools such as PCA
or PLS is to select the optimum lower-dimensional
representation of the original complex object (right
panel). Figure reproduced with permission from
www.graingerlab.org.
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used during the construction of the prin-
cipal components.

3.4
Genetic Computing

Another approach to building models that
optimally describe a dependent Y -variable
from a very large X-matrix is to gener-
ate a large pool of random models (that
are linear or nonlinear combinations of
the X -variables), a few of which will be
acceptable but most of which will be
poor, and then apply an evolutionary algo-
rithm to recombine the models and select
for improved description of the depen-
dent variable. The evolution is continued
through a number of generations, and
models can emerge that explain a good pro-
portion of the variation in the Y -variable.

This approach can offer a number of
advantages over projection-based meth-
ods. In particular, the ability to easily
include rules that combine X -variables in
nonlinear ways can be useful when mod-
eling biological systems that have inherent
nonlinearities. Another advantage of the
evolved models is that they are generally
easier to interpret than the optimized pro-
jection models. Combinations of simple
rules can be more intuitively obvious than
lists of principal components

One disadvantage of genetic computing
approaches, however, can be ‘‘premature
convergence’’ whereby the pool of models
undergoing evolution rapidly converges on
a local maximum of fitness and poorly
explores the entire model space. Improve-
ments are continually being made to the
basic genetic computing algorithms, and
recent advances such as multiobjective fit-
ness functions can alleviate the premature
convergence problem.

3.5
Other Approaches

The explosion of high data density ana-
lytical techniques in genomics and pro-
teomics, as well as metabonomics, has
stimulated the development and refine-
ment of a wide range of other bioinfor-
matics tools to assist in the interpreta-
tion of very large datasets. Hierarchical
cluster analysis (HCA) is particularly pop-
ular for the analysis of gene expression
datasets, but it is considerably less pow-
erful than both projection methods and
genetic computing algorithms, while of-
fering few advantages. As a result, HCA
has not been extensively used to interpret
metabonomic datasets.

Another approach, which has been used
in metabonomics, is neural network anal-
ysis. The neural net is set up with the
X -variables as inputs and the dependent
Y -variable as output, with a network of
nodes in between. The mathematical func-
tion applied at each node is then iteratively
varied during a learning phase to optimize
the successful prediction of the Y -variable.
Neural nets can be useful for performing
discriminant analysis (that is, classifying
observations into two or three groups on
the basis of their X-matrix values) and
hence used for clinical diagnostic pur-
poses, but the models they generate are
inherently difficult to interpret, because
a large number of structurally different
models can yield almost identical predic-
tive power.

3.6
Data Preprocessing and Data Filters

Model building with very large datasets
may be best performed in two or even
more steps. Rather than directly applying
one or more of the model building tools
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described above to the raw X-matrix, it
may be more powerful to perform a
preprocessing step first. In fact, as with
the model building tools themselves, the
object of most of the preprocessing steps
is to reduce dimensionality. However,
empirical observation suggests that more
powerful models can be generated if the
dimensionality is reduced in stepwise
fashion, perhaps using more than one tool,
rather than in a single leap.

Consequently, the most straightforward
preprocessing step would be to apply
one of the model building tools twice in
succession. For example, with projection
methods, it is possible (and sometimes
useful) to perform an initial principal
component analysis reducing the dimen-
sionality of the raw X-matrix from, say
8096 variables to tens or hundreds of
principal components, and then treat the
resulting matrix of principal components
as the X-matrix for a second round of
PCA to reduce the dimensionality down
to two or three components, which can
be more readily interpreted. The extent to
which such hierarchical PCA improves the
model compared with application of a sin-
gle round of PCA depends very much on
the particular data structure.

When dealing with metabonomic pro-
files derived from continuous spectra
(such as an NMR spectrum), the neigh-
boring variables (derived from integration
of contiguous regions of the spectrum) can
be very highly correlated. The shorter the
interval along the abscissa that composes
each variable, the higher is the degree of
local intercorrelation. This can be reduced
by integrating over wider intervals (or by
averaging neighboring integrals, a process
termed binning). This effectively reduces
the dimensionality of the spectral data,
while retaining much of the important
information encoded in the spectrum.

Binning relies on the fact that the most
highly intercorrelated variables are related
to each other by their position along the
abscissa in linear fashion. This may not
be true for all types of data; in some
cases, the most intercorrelated variables
may fall cyclically (for example, in the un-
transformed free-induction decay signal
from an NMR spectrometer). For analyz-
ing such datasets, wavelet transformation,
rather than binning, will provide the most
efficient dimensionality reduction prior to
model construction.

Finally, noise filters can be applied to
the dataset prior to model building, and
for NMR-derived metabonomic datasets
this has been shown to significantly
improve the performance of projection-
based modeling tools. Noise filters (such
as orthogonal signal correction; OSC)
aim to remove variation in the X-matrix,
which is uncorrelated with the dependent
Y -variable, simplifying the dataset for
subsequent modeling. It is important to
remember that noise filters like OSC
are therefore supervised methods, and
exhaustive validation of models built
on the filtered dataset will be required
irrespective of the nature of the modeling
tool subsequently used.

4
Applications of Metabonomics

4.1
Probing Normal Human Metabolism

The most obvious application for metabo-
nomics is to aid understanding of normal
human metabolism. It is possible to build
up a detailed picture of metabolic pathways
by taking a time series of metabolic pro-
files and constructing quantitative models
describing the metabolic flux through
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various pathways. Although the properties
of key metabolic pathways (such as glycol-
ysis or tricarboxylic acid cycle) have been
extensively investigated for years, metabo-
nomics can still reveal important aspects
of metabolism, which had previously gone
unnoticed. In particular, the interaction
between endogenous metabolic pathways
and the products of symbiotic bacterial
metabolism have been extensively investi-
gated using metabonomics.

4.2
Probing the Pathophysiology of Human
Disease

Metabonomics is particularly powerful for
analyzing the metabolic changes associ-
ated with the development of a particular
disease state. By comparing metabonomic
profiles taken from diseased individuals
with profiles from healthy control individ-
uals, it is possible to identify the systematic
differences associated with the presence of
the disease. What remains challenging,
however, is determining which (if any) of
these metabolic changes are causes of the
disease pathology, as opposed to direct or
even indirect consequences of the disease
progression.

For example, metabonomics has been
used to investigate the metabolic changes
associated with the development of osteo-
porosis. Serum samples from women with
low bone mineral density and from healthy
control women were subjected to 1H-NMR
analysis, and the resultant profiles com-
pared using the projection method PLS-
DA following an OSC prefilter. One of
the most important metabolites responsi-
ble for the separation of the diseased and
healthy individuals was the amino acid pro-
line. Women with pathological low bone
mineral density had lower levels of pro-
line in their serum; an observation that

was later confirmed used conventional
biochemical assays. While this does not
prove that low serum proline is respon-
sible for the lower bone density, it is a
plausible hypothesis for further investiga-
tion: proline is a key constituent of the
collagen component of bone matrix, and
inadequate proline supplies for collagen
biosynthesis could represent an entirely
novel pathophysiological mechanism in
the development of osteoporosis.

4.3
Investigating and Validating Animal Models
of Disease

Animal models of human diseases are
important tools in scientific and pharma-
ceutical research and development. The
development of genetic manipulation tech-
niques has allowed good models of many
monogenic disorders (such as muscular
dystrophy) to be developed, confident in
the knowledge that the underlying cause
of the disease is similar in the animal as
in man. In contrast, for complex poly-
genic disorders such as atherosclerosis
or Alzheimer’s disease, it is unclear to
what extent any given animal model mim-
ics the molecular mechanisms underlying
disease susceptibility in man, even if the
phenotype of the animals faithfully mir-
rors the human disease.

Metabonomics offers an opportunity to
address this question. Metabolic profiles of
animal models can be compared directly
with the profiles from human sufferers,
allowing a comparison of the physiolog-
ical perturbations accompanying disease
development in the two species. Perhaps
more powerfully, it should be possible
to track the metabolic trajectory of both
animals and humans as the disease pro-
gresses, with similar trajectories increas-
ing the confidence in the likely validity
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of the model. Studies of this nature are
currently underway for a range of animal
models of disease, but to date none have
been published.

4.4
Clinical Diagnosis of Disease

In many senses, using metabonomics
to perform clinical diagnoses is more
straightforward than its application to
biomarker identification and pathophys-
iological analysis. Providing a clinically
useful diagnosis of a disease on the ba-
sis of a serum sample only requires the
identification of a robust metabolic signa-
ture that always accompanies the disease
and is rarely, if ever, present in healthy
control individuals. It is not necessary to
be able to identify any of the molecular
components contributing to the disease-
associated metabolic signature.

For example, projection analysis us-
ing PLS-DA of 1H-NMR-derived metabo-
nomic profiles of serum samples from
individuals with coronary artery disease
and healthy control individuals demon-
strated clear separation of the two groups.
After application of the OSC prefilter, it
was possible to predict the disease status
of individuals with at least 90% sensi-
tivity and specificity. This metabonomics
diagnostic test outperforms all existing
noninvasive tests for coronary heart dis-
ease by a considerable margin. Although
such a test is potentially useful in the
clinic (since, at present, the gold-standard
diagnostic test for heart disease is an
invasive angiography procedure that is ex-
pensive and carries a small risk to the
patient), it does not readily identify the
particular molecular species responsible
for separating the two groups. Much of the
discriminatory power of the test falls in
the region of the NMR spectrum due to

lipid components (unsurprisingly, given
our knowledge of the mechanisms un-
derlying heart disease) but NMR poorly
resolves these closely related lipid struc-
tures and considerable further work will
be required before the precise molecular
basis for the success of the test is known.

4.5
Selection of Subjects for Clinical Trials

At present, a substantial impediment to
the testing of new therapeutics for certain
diseases is the ability to identify poten-
tial sufferers ahead of time. For example,
to test a drug proposed to reduce the in-
cidence of myocardial infarction requires
the recruitment of subjects at high risk of
suffering a myocardial infarction during
the trial. Unfortunately, current methods
of identifying such subjects are poor, and
trials of this nature can require the study of
thousands of individuals for three years or
more to accumulate sufficient myocardial
infarction events for the impact of the drug
to be detectable. Although metabonomics-
based diagnostics have yet to be used in
such applications, it is likely that their
widespread adoption will rapidly follow the
first successful demonstration of such use.

4.6
Monitoring Efficacy of Therapeutic
Interventions

One of the most exciting applications of
megavariate diagnostics, whether based on
metabonomic, genomic, or proteomic pro-
files, is the prospect of personalized ther-
apeutic interventions. At present, many
drugs are used on broad swathes of the
population (for example, statins to lower
circulating LDL cholesterol) without any
clear indication as to whether they are
equally effective in all individuals. Pilot
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studies already indicate that it is possible
to predict the response of an individ-
ual to statin therapy from their metabo-
nomic profile measured prior to beginning
therapy. Such ‘‘pharmacometabonomics’’
could be extended to optimize the dose and
delivery route of a wide range of drugs for
each individual, with likely improvements
in the efficacy of treatment.

4.7
Toxicology

Perhaps the most mature application
of metabonomics is the application of
metabolic profiling to toxicology. By study-
ing the metabolic response to a range
of model toxins (with organ-specific tox-
icity), it has been possible to identify
metabolic signatures associated with dam-
age to a particular organ. Extensive studies
following the metabolic trajectory of an-
imals treated with these model toxins
have been published, although commer-
cial considerations mean that few studies
of clinically relevant pharmaceutical com-
positions have reached the public domain.

While metabonomics may help improve
the predictivity of animal toxicology stud-
ies (which are notoriously difficult to inter-
pret using conventional physiological and
histological end points), perhaps the most
exciting possibility is the use of metabo-
nomics to perform early stage toxicology
directly in man. Because of the sensitivity
of metabonomics to detect minute pertur-
bations in the metabolic signature, it may
be possible to get an indication of the mode
of toxicity of novel chemical entities given
in man at doses well below those at which
any irreversible damage might occur. The
ability to perform meaningful toxicology
in man should improve the safety of our
medications, and at the same time reduce

the number of promising pharmaceuti-
cal compounds dropped at a relatively late
stage in development because of adverse,
and possibly species-specific, side effects
observed in the animal models currently
used for toxicology.

4.8
Predicting Future Disease Risk

If a metabonomic profile can be used to di-
agnose the presence of an existing disease
(such as coronary heart disease or osteo-
porosis), there is no reason in principle
why it cannot be used to predict future
disease susceptibility in the same way that
genomic profiles are currently being used.
To provide a useful indicator of future
disease risk, there must be a component
of the dynamic metabolic profile that is
temporarily stable on a timescale of years
and that is variable between individuals.
We have already shown that such a stable
interperson variance component exists in
NMR-derived metabonomic profiles, and
it will be interesting to see to what ex-
tent this stable element of the metabolic
profile predicts the risk of a range of im-
portant diseases.

5
Future Prospects and Challenges

The discipline of metabonomics is ex-
panding rapidly. Although selection from
among the many combinations of analyti-
cal chemistry and mathematical modeling
approaches for any given applications
remains empirical, nevertheless, the num-
ber of metabonomics studies is growing
quickly. Successful examples of the use
of metabonomics to answer a broad ar-
ray of scientific and practical questions
are now plentiful in the literature (see
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Sect. 4), and application to an ever-broader
array of problems seems inevitable. In-
deed, it is hard to think of a problem
that would not be better addressed by a
combination of high data density ‘‘omics’’
approaches than by hypothesis-driven re-
ductionist experimentation. It seems that
only a deep-seated unease among much
of the scientific community for such ex-
ploratory, holistic approaches relegates
the typical metabonomics experiment to
‘‘second-class status’’ and hampers an
even more rapid expansion.

One of the challenges facing metabo-
nomics over the coming years, therefore,
is to better understand which of the
many experimental approaches is opti-
mum for a given use. Doing so will
likely require the careful analysis of a
single sample set by multiple different
analytical chemistry techniques, and then
each resulting dataset be interpreted us-
ing a range of mathematical modeling
tools. In this way, the comparative power
of the different approaches will begin
to emerge.

Another important challenge is the in-
tegration of metabonomics datasets with
the large profiles generated by other high
data density techniques such as genomics
or proteomics. In a sense, the division
of ‘‘omics’’ science along the lines of
the analytical techniques needed to make
the measurements is entirely arbitrary.
Ultimately, it should prove powerful to
combine the profiles obtained from mul-
tiple different measurement approaches
(whether gene expression, protein lev-
els, or metabolite profiles) into a single
‘‘multi-omics descriptor.’’ While there re-
mains considerable debate as to exactly
how this amalgamation should be per-
formed, it is widely acknowledged that
such a system-wide profile is likely to
prove more powerful than a metabonomic

or genomic profile alone for many appli-
cations. Only such a system-wide profile
can allow a complete understanding of
such a complex system as a biologi-
cal organism.

See also Adipocytes.

Bibliography

Books and Reviews

Breiman, L. (2001) Statistical modelling: the two
cultures, Stat. Sci. 16(3), 199–231.

Eriksson, L., Johansson, E., Kettaneh-Wold, N.,
Wold, S. Multi-and Megavariate Data Analysis:
Principles and Applications, Umetrics Academy,
Umea, Sweden, pp 1–525.

German, J.B., Roberts, M.A., Watkins, S.M.
(2003) Personal metabolomics as a next
generation nutritional assessment, J. Nutr.
133(12), 4260–4266.

Holmes, E., Antti, H. (2002) Chemometric con-
tributions to the evolution of metabonomics:
mathematical solutions to characterising and
interpreting complex biological NMR spectra,
The Analyst 127(12), 1549–1557.

Kell, D.B. (2004) Metabolomics and systems
biology: making sense of the soup, Curr. Opin.
Microbiol. 7(3), 296–307.

Kell, D.B., Oliver, S.G. (2004) Here is the
evidence, now what is the hypothesis?
The complementary roles of inductive and
hypothesis-driven science in the post-genomic
era, BioEssays 26(1), 99–105.

Lindon, J.C., Holmes, E., Bollard, M.E., Stan-
ley, E.G., Nicholson, J.K. (2004) Metabo-
nomics technologies and their applications in
physiological monitoring, drug safety assess-
ment and disease diagnosis, Biomarkers 9(1),
1–31.

Moolenaar, S.H., Engelke, U.F., Wevers, R.A.
(2003) Proton nuclear magnetic resonance
spectroscopy of body fluids in the field
of inborn errors of metabolism, Ann. Clin.
Biochem. 40(Pt 1), 16–24.

Nicholson, J.K., Wilson, I.D. (2003) Understand-
ing ‘global’ systems biology: metabonomics
and the continuum of metabolism, Nat. Rev.
Drug Discov. 2(8), 668–676.



Metabonomics and Metabolomics 205

Weckwerth, W. (2003) Metabolomics in systems
biology, Annu. Rev. Plant Biol. 54, 669–689.

Primary Literature

Beckwith-Hall, B.M., Brindle, J.T., Barton, R.H.,
Coen, M., Holmes, E., Nicholson, J.K.,
Antti, H. (2002) Application of orthogonal
signal correction to minimise the effects
of physical and biological variation in high
resolution 1H NMR spectra of biofluids, The
Analyst 127(10), 1283–1288.

Blake, G.J., Otvos, J.D., Rifai, N., Ridker, P.M.
(2002) Low-density lipoprotein particle
concentration and size as determined by
nuclear magnetic resonance spectroscopy as
predictors of cardiovascular disease in women,
Circulation 106(15), 1930–1937.

Boersma, M.G., Solyanikova, I.P., Van Berkel,
W.J., Vervoort, J., Golovleva, L.A., Riet-
jens, I.M. (2001) 19F NMR metabolomics
for the elucidation of microbial degradation
pathways of fluorophenols, J. Ind. Microbiol.
Biotechnol. 26(1–2), 22–34.

Brindle, J.T., Nicholson, J.K., Schofield, P.M.,
Grainger, D.J., Holmes, E. (2003) Application
of chemometrics to 1H NMR spectroscopic
data to investigate a relationship between
human serum metabolic profiles and
hypertension, The Analyst 128(1), 32–36.

Brindle, J.T., Antti, H., Holmes, E., Tranter, G.,
Nicholson, J.K., Bethell, H.W., Clarke, S.,
Schofield, P.M., McKilligin, E., Mosedale,
D.E., Grainger, D.J. (2002) Rapid and
noninvasive diagnosis of the presence and
severity of coronary heart disease using 1H-
NMR-based metabonomics, Nat. Med. 8(12),
1439–1444; Epub 2002 Nov 25. Erratum in:
Nat. Med. 2003 9(4), 477.

Bundy, J.G., Ramlov, H., Holmstrup, M. (2003)
Multivariate metabolic profiling using 1H
nuclear magnetic resonance spectroscopy
of freeze-tolerant and freeze-intolerant
earthworms exposed to frost, Cryo. Letters
24(6), 347–358.

Burns, S.P., Woolf, D.A., Leonard, J.V., Iles, R.A.
(1992) Investigation of urea cycle enzyme
disorders by 1H-NMR spectroscopy, Clin.
Chim. Acta. 209(1–2), 47–60.

Bundy, J.G., Spurgeon, D.J., Svendsen, C.,
Hankard, P.K., Osborn, D., Lindon, J.C.,
Nicholson, J.K. (2002) Earthworm species of
the genus Eisenia can be phenotypically

differentiated by metabolic profiling, FEBS
Lett. 521(1–3), 115–120.

Choi, Y.H., Kim, H.K., Hazekamp, A., Erke-
lens, C., Lefeber, A.W., Verpoorte, R. (2004)
Metabolomic differentiation of cannabis sativa
cultivars using 1H NMR spectroscopy and
principal component analysis, J. Nat. Prod.
67(6), 953–957.

Coen, M., Lenz, E.M., Nicholson, J.K., Wil-
son, I.D., Pognan, F., Lindon, J.C. (2003) An
integrated metabonomic investigation of ac-
etaminophen toxicity in the mouse using
NMR spectroscopy, Chem. Res. Toxicol. 16(3),
295–303.

Eads, C.D., Furnish, C.M., Noda, I., Juhlin, K.D.,
Cooper, D.A., Morrall, S.W. (2004) Molecular
factor analysis applied to collections of NMR
spectra, Anal. Chem. 76(7), 1982–1990.

Engelke, U.F., Liebrand-van Sambeek, M.L.,
de Jong, J.G., Leroy, J.G., Morava, E.,
Smeitink, J.A., Wevers, R.A. (2004) N-
acetylated metabolites in urine: proton nuclear
magnetic resonance spectroscopic study on
patients with inborn errors of metabolism,
Clin. Chem. 50(1), 58–66.

Freedman, D.S., Otvos, J.D., Jeyarajah, E.J.,
Shalaurova, I., Cupples, L.A., Parise, H.,
D’Agostino, R.B., Wilson, P.W., Schaefer, E.J.
(2004) Sex and age differences in lipoprotein
subclasses measured by nuclear magnetic
resonance spectroscopy: the Framingham
study, Clin. Chem. 50(7), 1189–1200.

Gavaghan, C.L., Holmes, E., Lenz, E., Wilson,
I.D., Nicholson, J.K. (2000) An NMR-based
metabonomic approach to investigate the
biochemical consequences of genetic strain
differences: application to the C57BL10J
and Alpk:ApfCD mouse, FEBS Lett. 484(3),
169–174.

Gavaghan, C.L., Nicholson, J.K., Connor, S.C.,
Wilson, I.D., Wright, B., Holmes, E. (2001)
Directly coupled high-performance liquid
chromatography and nuclear magnetic
resonance spectroscopic with chemometric
studies on metabolic variation in Sprague-
Dawley rats, Anal. Biochem. 291(2), 245–252.

Griffin, J.L. (2004) Metabolic profiles to define
the genome: can we hear the phenotypes?
Philos. Trans. R. Soc. Lond. B Biol. Sci.
359(1446), 857–871.

Griffin, J.L., Cemal, C.K., Pook, M.A. (2004)
Defining a metabolic phenotype in the brain of
a transgenic mouse model of spinocerebellar
ataxia 3, Physiol. Genomics 16(3), 334–340.



206 Metabonomics and Metabolomics

Griffin, J.L., Troke, J., Walker, L.A., Shore, R.F.,
Lindon, J.C., Nicholson, J.K. (2000) The
biochemical profile of rat testicular tissue as
measured by magic angle spinning 1H NMR
spectroscopy, FEBS Lett. 486(3), 225–229.

Griffin, J.L., Williams, H.J., Sang, E., Clarke, K.,
Rae, C., Nicholson, J.K. (2001) Metabolic pro-
filing of genetic disorders: a multitissue (1)H
nuclear magnetic resonance spectroscopic and
pattern recognition study into dystrophic tis-
sue, Anal. Biochem. 293(1), 16–21.

Hammad, S.M., Powell-Braxton, L., Otvos, J.D.,
Eldridge, L., Won, W., Lyons, T.J. (2003)
Lipoprotein subclass profiles of hyperlipi-
demic diabetic mice measured by nuclear
magnetic resonance spectroscopy, Metabolism
52(7), 916–921.

Harrigan, G.G., LaPlante, R.H., Cosma, G.N.,
Cockerell, G., Goodacre, R., Maddox, J.F.,
Luyendyk, J.P., Ganey, P.E., Roth, R.A. (2004)
Application of high-throughput Fourier-
transform infrared spectroscopy in toxicology
studies: contribution to a study on the
development of an animal model for
idiosyncratic toxicity, Toxicol. Lett. 146(3),
197–205.

Hirabayashi, Y., Matsumoto, Y., Matsumoto, M.,
Toida, T., Iida, N., Matsubara, T., Kanzaki, T.,
Yokota, M., Ishizuka, I. (1990) Isolation and
characterization of major urinary amino acid
O-glycosides and a dipeptide O-glycoside from
a new lysosomal storage disorder (Kanzaki
disease). Excessive excretion of serine-and
threonine-linked glycan in the patient urine, J.
Biol. Chem. 265(3), 1693–1701.

Holmes, E., Foxall, P.J., Spraul, M., Farrant, R.D.,
Nicholson, J.K., Lindon, J.C. (1997) 750 MHz
1H NMR spectroscopy characterisation of the
complex metabolic pattern of urine from
patients with inborn errors of metabolism:
2-hydroxyglutaric aciduria and maple syrup
urine disease, J. Pharm. Biomed. Anal. 15(11),
1647–1659.

Jonsson, P., Gullberg, J., Nordstrom, A., Kusano,
M., Kowalczyk, M., Sjostrom, M., Moritz, T.
(2004) A strategy for identifying differences in
large series of metabolomic samples analyzed
by GC/MS, Anal. Chem. 76(6), 1738–1745.

Joshi, L., Van Eck, J.M., Mayo, K., Di
Silvestro, R., Blake Nieto, M.E., Ganapathi, T.,
Haridas, V., Gutterman, J.U., Arntzen, C.J.
(2002) Metabolomics of plant saponins:
bioprospecting triterpene glycoside diversity

with respect to mammalian cell targets,
OMICS 6(3), 235–246.

Kell, D.B. (2002) Metabolomics and machine
learning: explanatory analysis of complex
metabolome data using genetic programming
to produce simple, robust rules, Mol. Biol. Rep.
29(1–2), 237–241.

Ketchum, R.E., Rithner, C.D., Qiu, D., Kim, Y.S.,
Williams, R.M., Croteau, R.B. (2003) Taxus
metabolomics: methyl jasmonate preferen-
tially induces production of taxoids oxygenated
at C-13 in Taxus x media cell cultures, Phyto-
chemistry 62(6), 901–909.

Keun, H.C., Beckonert, O., Griffin, J.L.,
Richter, C., Moskau, D., Lindon, J.C., Nichol-
son, J.K. (2002) Cryogenic probe 13 C NMR
spectroscopy of urine for metabonomic stud-
ies, Anal. Chem. 74(17), 4588–4593.

Keun, H.C., Ebbels, T.M., Bollard, M.E., Beck-
onert, O., Antti, H., Holmes, E., Lindon, J.C.,
Nicholson, J.K. (2004) Geometric trajectory
analysis of metabolic responses to toxicity can
define treatment specific profiles, Chem. Res.
Toxicol. 17(5), 579–587.

Khandelwal, P., Beyer, C.E., Lin, Q., Schechter,
L.E., Bach, A.C., II. (2004) Studying rat
brain neurochemistry using nanoprobe NMR
spectroscopy: a metabonomics approach, Anal.
Chem. 76(14), 4123–4127.

Kikuchi, J., Shinozaki, K., Hirayama, T. (2004)
Stable isotope labeling of Arabidopsis thaliana
for an NMR-based Metabolomics approach,
Plant Cell. Physiol. 45(8), 1099–1104.

Kleno, T.G., Kiehr, B., Baunsgaard, D., Sidel-
mann, U.G. (2004) Combination of ‘omics’
data to investigate the mechanism(s) of
hydrazine-induced hepatotoxicity in rats and
to identify potential biomarkers, Biomarkers
9(2), 116–138.

Kraus, W.E., Houmard, J.A., Duscha, B.D., Knet-
zger, K.J., Wharton, M.B., McCartney, J.S.,
Bales, C.W., Henes, S., Samsa, G.P., Otvos,
J.D., Kulkarni, K.R., Slentz, C.A. (2002) Effects
of the amount and intensity of exercise on
plasma lipoproteins, N. Engl. J. Med. 347(19),
1483–1492.

Lenz, E.M., Bright, J., Wilson, I.D., Mor-
gan, S.R., Nash, A.F. (2003) 1H NMR-based
metabonomic study of urine and plasma sam-
ples obtained from healthy human subjects, J.
Pharm. Biomed. Anal. 33(5), 1103–1115.

Li, Z., Lamon-Fava, S., Otvos, J., Lichten-
stein, A.H., Velez-Carrasco, W., McNamara,
J.R., Ordovas, J.M., Schaefer, E.J. (2004) Fish



Metabonomics and Metabolomics 207

consumption shifts lipoprotein subfractions to
a less atherogenic pattern in humans, J. Nutr.
134(7), 1724–1728.

Mitchell, S., Holmes, E., Carmichael, P. (2002)
Metabonics and medicine: the biochemical
oracle, Biologist (London) 49(5), 217–221.

Moolenaar, S.H., Engelke, U.F., Abeling, N.G.,
Mandel, H., Duran, M., Wevers, R.A. (2001)
Prolidase deficiency diagnosed by 1H NMR
spectroscopy of urine, J. Inherit. Metab. Dis.
24(8), 843–850.

Moolenaar, S.H., Gohlich-Ratmann, G., En-
gelke, U.F., Spraul, M., Humpfer, E., Dvort-
sak, P., Voit, T., Hoffmann, G.F., Brauti-
gam, C., van Kuilenburg, A.B., van Gen-
nip, A., Vreken, P., Wevers, R.A. (2001) Beta-
ureidopropionase deficiency: a novel inborn
error of metabolism discovered using NMR
spectroscopy on urine, Magn. Reson. Med.
46(5), 1014–1017.

Mortishire-Smith, R.J., Skiles, G.L., Lawrence,
J.W., Spence, S., Nicholls, A.W., Johnson,
B.A., Nicholson, J.K. (2004) Use of
metabonomics to identify impaired fatty acid
metabolism as the mechanism of a drug-
induced toxicity, Chem. Res. Toxicol. 17(2),
165–173.

Nikiforova, V.J., Gakiere, B., Kempa, S.,
Adamik, M., Willmitzer, L., Hesse, H., Hoe-
fgen, R. (2004) Towards dissecting nutrient
metabolism in plants: a systems biology case
study on sulphur metabolism, J. Exp. Bot.
55(404), 1861–1870. Epub 2004 Jun 18.

Ohdoi, C., Nyhan, W.L., Kuhara, T. (2003)
Chemical diagnosis of Lesch-Nyhan syndrome
using gas chromatography-mass spectrometry
detection, J. Chromatogr. B Analyt. Technol.
Biomed. Life. Sci. 792(1), 123–130.

Ohse, M., Matsuo, M., Ishida, A., Kuhara, T.
(2002) Screening and diagnosis of beta-
ureidopropionase deficiency by gas chromato-
graphic/mass spectrometric analysis of urine,
J. Mass. Spectrom. 37(9), 954–962.

Ott, K.H., Aranibar, N., Singh, B., Stockton,
G.W. (2003) Metabonomics classifies path-
ways affected by bioactive compounds,
Artificial neural network classification of NMR
spectra of plant extracts. Phytochemistry 62(6),
971–985.

Otvos, J.D., Jeyarajah, E.J., Bennett, D.W.,
Krauss, R.M. (1992) Development of a proton
nuclear magnetic resonance spectroscopic
method for determining plasma lipoprotein
concentrations and subspecies distributions

from a single, rapid measurement, Clin. Chem.
38(9), 1632–1638.

Pham-Tuan, H., Kaskavelis, L., Daykin, C.A.,
Janssen, H.G. (2003) Method development in
high-performance liquid chromatography for
high-throughput profiling and metabonomic
studies of biofluid samples, J. Chromatogr.
B Analyt. Technol. Biomed. Life. Sci. 789(2),
283–301.

Plumb, R.S., Stumpf, C.L., Gorenstein, M.V.,
Castro-Perez, J.M., Dear, G.J., Anthony, M.,
Sweatman, B.C., Connor, S.C., Haselden, J.N.
(2002) Metabonomics: the use of electrospray
mass spectrometry coupled to reversed-
phase liquid chromatography shows potential
for the screening of rat urine in drug
development, Rapid Commun. Mass Spectrom.
16(20), 1991–1996.

Purohit, P.V., Rocke, D.M., Viant, M.R., Wood-
ruff, D.L. (2004) Discrimination models
using variance-stabilizing transformation of
metabolomic NMR data, OMICS Summer;
8(2), 118–130.

Raamsdonk, L.M., Teusink, B., Broadhurst, D.,
Zhang, N., Hayes, A., Walsh, M.C., Berden,
J.A., Brindle, K.M., Kell, D.B., Rowland, J.J.,
Westerhoff, H.V., van Dam, K., Oliver, S.G.
(2001) A functional genomics strategy that
uses metabolome data to reveal the phenotype
of silent mutations, Nat. Biotechnol. 19(1),
45–50.

Robertson, D.G., Reily, M.D., Albassam, M.,
Dethloff, L.A. (2001) Metabonomic assess-
ment of vasculitis in rats, Cardiovasc. Toxicol.
1(1), 7–19.

Sato, S., Soga, T., Nishioka, T., Tomita, M.
(2004) Simultaneous determination of the
main metabolites in rice leaves using
capillary electrophoresis mass spectrometry
and capillary electrophoresis diode array
detection, Plant J. 40(1), 151–163.

Slim, R.M., Robertson, D.G., Albassam, M.,
Reily, M.D., Robosky, L., Dethloff, L.A. (2002)
Effect of dexamethasone on the metabo-
nomics profile associated with phosphodi-
esterase inhibitor-induced vascular lesions
in rats, Toxicol. Appl. Pharmacol. 183(2),
108–109.

Soedamah-Muthu, S.S., Chang, Y.F., Otvos, J.,
Evans, R.W., Orchard, T.J. (2003) Pittsburgh
epidemiology of diabetes complications
study. Lipoprotein subclass measurements
by nuclear magnetic resonance spectroscopy
improve the prediction of coronary artery



208 Metabonomics and Metabolomics

disease in Type 1 diabetes. A prospective
report from the Pittsburgh epidemiology
of diabetes complications study, Diabetologia
46(5), 674–682.

Tang, H., Wang, Y., Nicholson, J.K., Lindon, J.C.
(2004) Use of relaxation-edited one-
dimensional and two dimensional nuclear
magnetic resonance spectroscopy to improve
detection of small metabolites in blood plasma,
Anal. Biochem. 325(2), 260–272.

Tate, A.R., Foxall, P.J., Holmes, E., Moka, D.,
Spraul, M., Nicholson, J.K., Lindon, J.C. (2000)
Distinction between normal and renal cell
carcinoma kidney cortical biopsy samples
using pattern recognition of (1)H magic angle
spinning (MAS) NMR spectra, NMR Biomed.
13(2), 64–71.

Van, Q.N., Chmurny, G.N., Veenstra, T.D.
(2003) The depletion of protein signals
in metabonomics analysis with the WET-
CPMG pulse sequence, Biochem. Biophys. Res.
Commun. 301(4), 952–959.

Verhoeckx, K.C., Bijlsma, S., Jespersen, S., Ra-
maker, R., Verheij, E.R., Witkamp, R.F., Van
Der Greef, J., Rodenburg, R.J. (2004) Char-
acterization of anti-inflammatory compounds
using transcriptomics, proteomics, and
metabolomics in combination with multivari-
ate data analysis, Int. Immunopharmacol. 4(12),
1499–1514.

Viant, M.R. (2003) Improved methods for
the acquisition and interpretation of NMR
metabolomic data, Biochem. Biophys. Res.
Commun. 310(3), 943–948.

Wang, Y., Bollard, M.E., Keun, H., Antti, H.,
Beckonert, O., Ebbels, T.M., Lindon, J.C.,

Holmes, E., Tang, H., Nicholson, J.K. (2003)
Spectral editing and pattern recognition
methods applied to high-resolution magic-
angle spinning 1H nuclear magnetic
resonance spectroscopy of liver tissues, Anal.
Biochem. 323(1), 26–32.

Watkins, S.M., Reifsnyder, P.R., Pan, H.J.,
German, J.B., Leiter, E.H. (2002) Lipid
metabolome-wide effects of the PPARgamma
agonist rosiglitazone, J. Lipid. Res. 43(11),
1809–1817.

Wevers, R.A., Engelke, U., Heerschap, A. (1994)
High-resolution 1H-NMR spectroscopy of
blood plasma for metabolic studies, Clin.
Chem. 40(7 Pt 1), 1245–1250.

Wevers, R.A., Engelke, U.F., Moolenaar, S.H.,
Brautigam, C., de Jong, J.G., Duran, R., de
Abreu, R.A., van Gennip, A.H. (1999) 1H-
NMR spectroscopy of body fluids: inborn
errors of purine and pyrimidine metabolism,
Clin. Chem. 45(4), 539–548.

Xu, J., Chang, V., Joseph, S.B., Trujillo, C.,
Bassilian, S., Saad, M.F., Lee, W.N., Kur-
land, I.J. (2004) Peroxisomal proliferator-
activated receptor alpha deficiency di-
minishes insulin-responsiveness of gluco-
neogenic/glycolytic/pentose gene expression
and substrate cycle flux, Endocrinology 145(3),
1087–1095.

Yu, H.H., Ginsburg, G.S., O’Toole, M.L., Otvos,
J.D., Douglas, P.S., Rifai, N. (1999) Acute
changes in serum lipids and lipoprotein
subclasses in triathletes as assessed by proton
nuclear magnetic resonance spectroscopy,
Arterioscler. Thromb. Vasc. Biol. 19(8),
1945–1949.


